203 research outputs found

    FESOM-C v.2: coastal dynamics on hybrid unstructured meshes

    Get PDF
    We describe FESOM-C, the coastal branch of the Finite-volumE Sea ice – Ocean Model (FESOM2), which shares with FESOM2 many numerical aspects, in particular its finite-volume cell-vertex discretization. Its dynamical core differs in the implementation of time stepping, the use of a terrain-following vertical coordinate, and the formulation for hybrid meshes composed of triangles and quads. The first two distinctions were critical for coding FESOM-C as an independent branch. The hybrid mesh capability improves numerical efficiency, since quadrilateral cells have fewer edges than triangular cells. They do not suffer from spurious inertial modes of the triangular cell-vertex discretization and need less dissipation. The hybrid mesh capability allows one to use quasi-quadrilateral unstructured meshes, with triangular cells included only to join quadrilateral patches of different resolution or instead of strongly deformed quadrilateral cells. The description of the model numerical part is complemented by test cases illustrating the model performance.</p

    Installation and first results from a remote-controlled automatic FTIR spectrometer on

    Get PDF
    The first successful FTIR measurements on Stromboli were conducted in 2000, producing remarkable insights into the rapidly changing dynamics of degassing and explosive processes. The ability of the FTIR to simultaneously measure all the major species contained in volcanic gas emissions (H2O, CO2, SO2, HCl, HF, CO, OCS, SiF4) at high temporal resolution, when combined with the automatic SO2 flux monitoring system already installed on Stromboli could allow fluxes of all these gases to be determined accurately and automatically. In order to achieve this objective, we have designed a remotely controlled FTIR-scanner system that allows directional control over the field of view of the spectrometer. The system is planned for installation in June/July 2008, and we will present the first results from the system in this paper

    Scalar and vector Slepian functions, spherical signal estimation and spectral analysis

    Full text link
    It is a well-known fact that mathematical functions that are timelimited (or spacelimited) cannot be simultaneously bandlimited (in frequency). Yet the finite precision of measurement and computation unavoidably bandlimits our observation and modeling scientific data, and we often only have access to, or are only interested in, a study area that is temporally or spatially bounded. In the geosciences we may be interested in spectrally modeling a time series defined only on a certain interval, or we may want to characterize a specific geographical area observed using an effectively bandlimited measurement device. It is clear that analyzing and representing scientific data of this kind will be facilitated if a basis of functions can be found that are "spatiospectrally" concentrated, i.e. "localized" in both domains at the same time. Here, we give a theoretical overview of one particular approach to this "concentration" problem, as originally proposed for time series by Slepian and coworkers, in the 1960s. We show how this framework leads to practical algorithms and statistically performant methods for the analysis of signals and their power spectra in one and two dimensions, and, particularly for applications in the geosciences, for scalar and vectorial signals defined on the surface of a unit sphere.Comment: Submitted to the 2nd Edition of the Handbook of Geomathematics, edited by Willi Freeden, Zuhair M. Nashed and Thomas Sonar, and to be published by Springer Verlag. This is a slightly modified but expanded version of the paper arxiv:0909.5368 that appeared in the 1st Edition of the Handbook, when it was called: Slepian functions and their use in signal estimation and spectral analysi

    Treatment of limited stage follicular lymphoma with Rituximab immunotherapy and involved field radiotherapy in a prospective multicenter Phase II trial-MIR trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The optimal treatment of early stage follicular Lymphoma is a matter of debate. Radiation therapy has frequently been applied with a curative approach beside watchful waiting. Involved field, extended field and total nodal radiation techniques are used in various protocols, but the optimal radiation field still has to be defined. Follicular lymphoma is characterized by stable expression of the CD20 antigen on the tumour cells surface. The anti CD20 antibody Rituximab (Mabthera<sup>®</sup>) has shown to be effective in systemic therapy of FL in primary treatment, relapse and maintenance therapy.</p> <p>Methods/design</p> <p>The MIR (Mabthera<sup>® </sup>and Involved field Radiation) study is a prospective multicenter trial combining systemic treatment with the anti CD20 antibody Rituximab (Mabthera<sup>®</sup>) in combination with involved field radiotherapy (30 - 40 Gy). This trial aims at testing the combination's efficacy and safety with an accrual of 85 patients.</p> <p>Primary endpoint of the study is progression free survival. Secondary endpoints are response rate to Rituximab, complete remission rate at week 18, relapse rate, relapse pattern, relapse free survival, overall survival, toxicity and quality of life.</p> <p>Discussion</p> <p>The trial evaluates the efficacy of Rituximab to prevent out-filed recurrences in early stage nodal follicular lymphoma and the safety of the combination of Rituximab and involved field radiotherapy. It also might show additional risk factors for a later recurrence (e.g. remission state after Rituximab only).</p> <p>Trial Registration</p> <p>ClinicalTrials (NCT): <a href="http://www.clinicaltrials.gov/ct2/show/NCT00509184">NCT00509184</a></p

    Extensive retreat of Greenland tidewater glaciers 2000-2010

    Get PDF
    Overall mass loss from the Greenland ice sheet nearly doubled during the early 2000s resulting in an increased contribution to sea-level rise, with this step-change being mainly attributed to the widespread frontal retreat and accompanying dynamic thinning of tidewater glaciers. Changes in glacier calving-front positions are easily derived from remotely sensed imagery and provide a record of dynamic change. However, ice-sheet-wide studies of calving fronts have been either spatially or temporally limited. In this study multiple calving-front positions were derived for 199 Greenland marine-terminating outlet glaciers with width greater than 1 km using Landsat imagery for the 11-year period 2000–2010 in order to identify regional seasonal and inter-annual variations. During this period, outlet glaciers were characterized by sustained and substantial retreat summing to more than 267 km, with only 11 glaciers showing overall advance. In general, the pattern of mass loss detected by GRACE (Gravity Recovery and Climate Experiment) and other measurements is reflected in the calving record of Greenland glaciers. Our results suggest several regions in the south and east of the ice sheet likely share controls on their dynamic changes, but no simple single control is apparent

    Overexpression of Arabidopsis FLOWERING LOCUS T (FT) gene improves floral development in cassava (Manihot esculenta, Crantz)

    Get PDF
    Cassava is a tropical storage-root crop that serves as a worldwide source of staple food for over 800 million people. Flowering is one of the most important breeding challenges in cassava because in most lines flowering is late and non-synchronized, and flower production is sparse. The FLOWERING LOCUS T (FT) gene is pivotal for floral induction in all examined angiosperms. The objective of the current work was to determine the potential roles of the FT signaling system in cassava. The Arabidopsis thaliana FT gene (atFT) was transformed into the cassava cultivar 60444 through Agrobacterium-mediated transformation and was found to be overexpressed constitutively. FT overexpression hastened flower initiation and associated fork-type branching, indicating that cassava has the necessary signaling factors to interact with and respond to the atFT gene product. In addition, overexpression stimulated lateral branching, increased the prolificacy of flower production and extended the longevity of flower development. While FT homologs in some plant species stimulate development of vegetative storage organs, atFT inhibited storage-root development and decreased root harvest index in cassava. These findings collectively contribute to our understanding of flower development in cassava and have the potential for applications in breeding
    • …
    corecore